
www.manaraa.com

Research Article
SRAF: A Service-Aware Resource Allocation Framework for VM
Management in Mobile Data Networks

Kang Liu,1 Ruijuan Zheng ,1 Mingchuan Zhang ,1 Chao Han,2 Junlong Zhu,1

and Qingtao Wu 1

1College of Information Engineering, Henan University of Science and Technology, Luoyang 471000, China
2Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Correspondence should be addressed to Ruijuan Zheng; zhengruijuan@haust.edu.cn

Received 11 September 2018; Accepted 25 October 2018; Published 2 December 2018

Academic Editor: Wenchi Cheng

Copyright © 2018 Kang Liu et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Service latency and resource utilization are the key factors which limit the development of mobile data networks. To this end, we
present a service-aware resource allocation framework, called SRAF, to allocate the basic resources by managing virtual machine
(VM). In SRAF, we design two new methods for better virtual machine (VM) management. Firstly, we propose the self-learning
classification algorithm (SCA) which executes the service request classification. *en, we use the classification results to schedule
different types of VMs. Secondly, we design a sharing mode to jointly execute service requests, which can share the CPU and
bandwidth simultaneously. In order to enhance the utilization of resources with the sharing mode, we also design two scaling
algorithms, i.e., the horizontal scaling and the vertical scaling, which execute the operation of resource-level scaling and VM-level
scaling, respectively. Furthermore, to enhance the stability of SRAF and avoid the frequent operation of scaling, we introduce
a Markov decision process (MDP) to control VM migration. *e experimental results reveal that SRAF greatly reduces service
latency and enhances resource utilization. In addition, SRAF also has a good performance on stability and robustness for different
situations of congestion.

1. Introduction

Virtual machine (VM) management based on service
awareness is a new method which can greatly reduce the
service latency and enhance the resource utilization. In
addition, VM management has been widely used in various
mobile data networks, such as information center network
(ICN), mobile vehicle network (MVN), and mobile cloud
network (MCN). However, the resource pools of networks
are limited. Moreover, the service latency and resource
utilization are interactional. *erefore, how to reduce the
service latency and how to enhance the utilization of re-
sources, simultaneously, have been the focus point of re-
search studies, especially for MCN [1, 2].

For this reason, service latency and resource utilization
have become main aspects in many research studies. In the
perspective of service latency, Reference [3] proposes the
Predictable Resource Guarantee Scheduler scheme to realize
the proportional sharing of CPU and I/O bandwidth, which

reduces the waiting time in the Xen platform. Reference [2]
uses the cloudlet selection strategy to schedule the cloudlets
for cutting down the response time. In addition, there are
also some studies using the method of cutting down the
distance between locations to reduce the latency. For ex-
ample, Reference [1] aims to find the shortest path between
the user and the nearest cloud datacenter for reducing the
transmission latency. For reducing the queueing time of
requests, Reference [4] uses the method of active commu-
nication between controllers to proactively pull the requests
when the controller finishes its requests so as to cut down the
queue length. On the contrary, in the perspective of resource
utilization, Reference [5] presents a smart migration
mechanism to implement processor memory optimization
based on VM placement. References [6, 7], respectively, use
the methods of Bejo and kNN classification schemes to
classify the requests for better scheduling. Reference [8]
designs a Lyapunov optimization framework to improve the
efficiency of the mobile-edge computing. *e purpose of the
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Lyapunov optimization framework is to minimize the re-
source overload by VM scheduling.

*e works cited above propose many new ideas or
methods to realize the optimal request schedule or optimal
resource configuration, which can reduce delay or enhance
the resource utilization. However, due to the complexity of
the cloud network and diversity of mobile devices, the re-
quests are also various and uncontrolled. So, the simple
objective studies do not always have a good performance on
different factors because many factors are interactional.
*erefore, there are some researchers who design efficient
methods with an overall framework to optimize these
problems. In [9], the authors design a resource sharing
framework named “Symbiosis” to realize the sharing of CPU
and bandwidth. When one request is working in the CPU,
the Symbiosis will make another request to perform the
transmission. Moreover, the Symbiosis can efficiently reduce
the service latency of the requests. In [6], the authors
propose a new classification algorithm named “Bejo” to
classify the requests. *e classification results are used to
perform the VM scheduling. *e fitting VM for requests can
enhance the utilization of resources. *erefore, we propose
a new framework called SRAF to execute requests classifi-
cation and resources sharing based on the strength of re-
search studies in [6, 9].

For measuring the performance of SRAF, we analyze
MCN in detail. *e SRAF can be divided into two aspects.
Firstly, we propose a self-learning classification algorithm
(SCA) to perform the classification operation before the
request is sent to the VM. *e SCA is designed by two
weighting methods, location weighting and feature
weighting [10], which can improve the veracity of requests
classification. *e precise classification results can help the
request find a fitting VM so as to reduce the service latency.
Secondly, we design a sharing mode (Figure 1) to realize the
resource sharing in a VM. Furthermore, in order to improve
the utilization of the resources, we also design two VM
scaling algorithms, the horizontal scaling and vertical
scaling. *e former is to realize the resource-level scaling in
a VM. When the utilization of CPU or bandwidth is too
high, the algorithm will add corresponding resources to the
VM for avoiding overload, or otherwise for scaling down.
*e latter is to perform the VM-level scaling. When all the
VMs are busy and the arrival tasks are continuously growing,
new VMs are created, or otherwise released.

*e contributions of this paper are as follows:

(i) We propose a new framework named “SRAF” to
improve the resource utilization and reduce the
service latency simultaneously.

(ii) We design the SCA which has the self-learning
capacity for updating features so as to classify the
service requests. In addition, SCA can improve the
accuracy of classification continuously until all the
features are learned.

(iii) We introduce a Markov decision process (MDP) to
control VM migration so as to reduce the frequent
scaling operation and enhance the stability of SRAF.

(iv) We propose a Combination Scheduling Cost Model
and a sharing mode for mobile data networks.
Combination Scheduling Cost Model can system-
atically operate VMs scheduling and scaling.
Moreover, the resource utilization is improved di-
rectly via the sharing mode.

*e rest of this paper is organized as follows: Section 2
has a brief introduction of related research works. We
particularly introduce the details of each component of
SRAF in Section 3. Section 4 shows the overall process of
SRAF, including eachmodel and related algorithm. Section 5
presents the feasibility and performance of SRAF by some
experiments. Section 6 presents a brief conclusion of this
paper.

2. Related Work

To reduce the service delay and enhance the utilization of
resources, many studies propose various methods. For ex-
ample, Reference [3] proposes a new prediction method to
reach the objective of resource sharing. Researchers use the
prediction method to predict the demand of the next du-
ration time so as to adjust the resources for enhancing the
utilization of resources. References [2, 5] use different
methods to schedule the cloudlet and VM for reducing the
response time and free time of resources, respectively. Due
to the diversity of mobile access devices, the requests are also
different and uncontrolled. For this reason, some studies
design different classification algorithms to classify different
requests, which depend on demand or input data for prior
disposal [6, 7]. *en, researchers can use some classical and
effective methods to reduce the queueing time and improve
the utilization of resources, such as shortest job first (SJF)
[12] and priority-aware longest job first (PA-LJF) [13].
Moreover, there are also some other new improvedmethods,
such as shortest expected-remaining service time policy (SE-
RSTP) [14] and dynamic-threshold service policy [15],
which have a better performance for reducing delay and
improving the QoS.

In addition, due to the randomness of service requests,
some researchers use the Markov decision process (MDP) to
quantify the overall process of cloud service. For example,
Reference [16] uses the dynamic Markov decision process to
model the process of VM scheduling. *en, the value it-
eration algorithm is used to find the optimal VM control
policy for reducing energy expenditure. Reference [17] also
uses the MDP to quantify the overall VM control. It uses the
Bellman optimality equation to find a global optimum
threshold so as to cut down erratic operation of VMs. To
enhance the veracity of task scheduling by MDP, Reference
[18] designs a semi-Markov decision process to select some
computation-intensive tasks for offloading so as to reduce
the computations in mobile devices.

Due to the above analysis, single method or policy can
only realize one or two objectives. *erefore, some re-
searchers choose to design an overall framework to handle
multiple objectives. For example, References [8, 9] design
different frameworks, Lyapunov optimization framework
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and Symbiosis, to control the scheduling of requests and
VMs, respectively. Furthermore, there are also some re-
searchers who add classi�cation methods to enhance the
performance of di�erent frameworks for di�erent objectives.
For example, Reference [19] uses the reweighting method to
label di�erent factors by machine learning. Reference [11]
uses the multi-instance learning method (MIL) to quantify
di�erent data for precise classi�cation with the probabilistic
graphical framework. Reference [10] uses the method of
local feature selection to classify the data directly. In ad-
dition, many studies also use the sharing method to improve
the utilization of resources in di�erent �elds. For example,
Reference [20] proposes a feasible and truthful incentive
mechanism (TIM) to realize the resource sharing with the
trade-o� between users and service providers. Reference [21]
uses the sharing mode to satisfy the resources demand of the
remote radio network and central virtual base station so as to
maximize downlink of networks.

3. Architecture Design

In this section, we designed a green cloud resource allocation
framework called SRAF. �e objective is to reduce the delay
of scheduling the service request and improve the resource
utilization simultaneously. Our framework contains three
layers, the User Layer, the Request Manager Layer, and the
Resource Provider Layer.

In Figure 2, we show the overall response process of
service requests.�e User Layer has many users with various
mobile terminals which send service requests to the mobile
cloud. �e Request Manager Layer is the most important
layer to receive the service requests from the User Layer. Its
main duty is to make optimization management of service
requests and VMs. �en, the results are sent to the Resource
Provider Layer for VM con�guration. �e Resource Pro-
vider Layer provides basic resources for the service. �e
Request Manager Layer includes four components:

(1) �e History Loads is used to store the requests and
their categories which can help the Classi�cation
Manager in updating its feature mapping library.�e
category information comes from the Combination
Scheduling Manager when requests are serviced.

(2) �e Classi�cation Manager analyzes the information
from the requests and classi�es the requests into
three types, i.e., �le-focus tasks, video-focus tasks,
and normal tasks, depending on the demand of
bandwidth and CPU resources (details are given in
Section 4.2).

(3) �e Combination Scheduling Manager uses the
classi�cation results from the Classi�cation Manager
to make combination scheduling of the requests;
then, it performs resource allocation and pushes the
real information of the requests to the History Loads
for updating its features (details are given in Section
4.4) during the operation.

(4) �e Monitor Manager monitors the utilizations of
the CPU and bandwidth of each active VM to
support real-time service information.

�e Resource Provider Layer has many resource pools,
such as CPU, bandwidth, and memory. �is layer provides
basic resources for VMs so as to handle these service
requests.

4. Model Design and Algorithm Analysis

4.1. System Model. Our goal is to reduce the service delay
and enhance the resource utilization by the proposed system
architecture, which can choose a suitable VM in the
physical machine for the service requests. In other words,
we will make a �tting combination of request, VM, and
physical host, described as 〈taski〉⟶ 〈VMj〉⟶ 〈hostk〉,
i ∈ 1, 2, . . . , M{ }, j ∈ 1, 2, . . . , N{ }, and k ∈ 1, 2, . . . , Q{ }.

De�nition 1. For a set of hosts 〈hostk〉 � host1, host2,{
. . . , hostk, . . . , hostQ} and the VM set 〈VMj � VM1,{
VM2, . . . ,VMj, . . . ,VMN}, the connection of them can be
de�ned as a matrix UQ×N, i.e.,

UQ×N � ukj[ ]
Q×N

, (1)

where if VMj is not created or released on hostk at the
beginning, then we set ukj � −1. If VMj locates on hostk,
then ukj ∈ (0, 1). At the same time, we use the ucpu

kj ∈ (0, 1)
to denote the utilization of CPU on VMj and use
ubw

kj ∈ (0, 1) to denote the utilization of bandwidth on VMj.

De�nition 2. For a set of tasks 〈taski〉 � task1, task2,{
. . . , taski, . . . , taskM} and a virtual machine set
〈VMj〉 � VM1,VM2, . . . ,VMj, . . . ,VMN{ }, the distribu-
tion of the tasks is de�ned as a matrix AM×N, i.e.,

AM×N � aij[ ]M×N
, (2)

where aij ∈ 0, 1{ }; if aij � 1, then that taski is distributed on
VMj. If aij � 0, there is no connection between taski and
VMj.

Video-focus tasks line

File-focus tasks line

Downlinks

CPU

v-task

f-task

VM

Figure 1: �e sharing mode of the high-type VMs.
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4.2. Classi�cation Model. Considering the complexity of
mobile terminals, we will make the classi�cation from the
perspective of service in the mobile cloud network. �ere-
fore, all of the requests can be divided into three kinds of
tasks, i.e., the video-focus tasks, �le-focus tasks, and normal
tasks.

�e classi�cation model has three components: (1)
feature mapping library is used to store the relationship of
the features and their corresponding service classes so as to
make classi�cation; (2) classi�er traction is used to classify
the tasks according to their input data and the mapping in
the feature mapping library; and (3) supervisor updater is
used to supervise and update the mapping in the feature
mapping library based on the information from the History
Loads.

In this section, we use self-learning classi�cation algo-
rithm (SCA) to operate classi�cation. SCA is designed by the
machine learning technology [22, 23] because we can
constantly extend and update the feature mapping library so
as to improve the accuracy of the classi�cation by the
machine learning. �e SCA also improves the traditional
classi�cation algorithm by multiple weighting and uses the
semisupervised method to update the features in the feature
mapping library according to the feedback from the History
Loads [24]. SCA uses the method of learning to expand the
new relationship of features and service requests so as to
enhance the veracity of classi�cation results. �erefore, SCA
uses the combination of location weighting, feature
weighting, and self-learning methods to determine the �nal
class of each request.

In the process of SCA, we use GV and GF to denote the
mapping set of videos and �les, respectively. We �rstly
append some typical features into the feature mapping li-
brary for the mapping set G � GV, GF{ }, such as
GV � 〈tv, video〉, 〈dvd, video〉, . . . , 〈avi, video〉{ } and GF �
〈doc, file〉, 〈wps, file〉, . . . , 〈ppt, file〉{ }. �en, SCA uses the
input data of requests to �nd the mapping in the G. In the
process of mapping, we use the methods of location
weighting and feature weighting to ensure the request has
a precise classi�cation. Feature weighting is that di�erent
features have di�erent weighting. For example, the feature
“video” has a large weighting than “avi” for indicating video
tasks. Location weighting is that we use the location of
di�erent features in the URL to weighting. For example, if

a request URL is divided into n segments, then we can use
these n segments to form a one-dimensional array
L � l1, l2, . . . , ln{ }. We use αi to denote the location weight of
the i− th feature:

αi �
n− nloc( )

n
, (3)

where nloc is the location of the i−th feature in the order.
Moreover, the more forward the location is in the order,
the more important the feature is in the description [25].
We use β as the �nal weight to determine which task line
the request should be scheduled. For example, there is
a request with some features in GV, such as fea �
ki ∈ L ∣ i � 1, 2, . . . , m, m< n{ } and fea⊆GV. �e weighting
of ki is β

i
v for i ∈ 1, 2, . . . , m{ }. Hence, the total weighting of

video features in the request URL is calculated by

βv � ∑
m

i�1
αiβ

i
v. (4)

Similarly, the total weighting of �le features in the re-
quest URL is calculated by

βf � ∑
m

i�1
αiβ

i
f . (5)

Finally, the attribution of the service request is calculated
by

β � max βv, βf{ }. (6)

If βv ≥ βf , this request is transmitted to the video-focus
tasks line. Otherwise, this request is transmitted to the �le-
focus tasks line. If βv and βf are equal to zero, this request
will be transmitted to the normal tasks line. �e process of
SCA is shown in Algorithm 1.

4.3. VM Migration. According to De�nition 1 and De�ni-
tion 2, the overall process of SRAF is to �nd an appropriate
location in VMj and hostk for taski. If we de�ne a location
function as B(t) ≔ [aij(t), ukj(t)], then that taski is
scheduled on VMj and VMj located in hostk at time t. In
addition, when taski is classi�ed by classi�er traction, it will
be scheduled to VMj and it cannot be transferred.�erefore,
when the resource of hostk cannot satisfy the demand of

Service request

The history loads

Classifier traction

User layer The classification manager

Feature mapping
library

Supervisor
updater

Information flow

Video-focus tasks line

File-focus tasks line

Normal tasks line

VM1

VM2

VMn

VM1

VM2

VMn

The combination
scheduling manager

Normal-type VMs

High-type VMs

The
monitor
manager

Resource
provider

layer

CPUs,

bandwidths,

RAMs,

memories,

Request manager layer

ResourcesVMs

Figure 2: Architecture of the SRAF framework.

4 Mobile Information Systems



www.manaraa.com

VMj, VMj will be migrated to another host at timeslot t
based on practical conditions from the Monitor Manager.
Let D(t) ≔ dj,kk′(t) ∣ j ∈ N; k, k′ ∈ Q  represents the set
of action, where dj,kk′(t) means VMj canmigrate from hostk
to hostk′ at timeslot t. Correspondingly, each dj,kk′(t) has
a migration probability as pj,kk′(t), and all the probabilities
make up probability set P, indexed as

P(t) ≔ pj,kk′(t)|j ∈ N; k, k′ ∈ Q , 
k,k′∈Q

pj,kk′(t) � 1.

(7)

*e cost function of VM migration is defined as

fj(t) � 
k,k′∈Q

Ck,k′
pj,kk′(t), (8)

which means the additional expenditure of VM migration.
Ck,k′ is the migration expenditure of VMj from hostk to
hostk′ . In addition, Ck,k′ is influenced by the migration
distance and the latter operation expenditure. Hence, let
E � B(t), D(t),P(t), fj(t)  be a basic MDP to represent
VM migration because the arrival of service requests is
based on the Poisson process [32, 33]. So, if the capacity of
VMj is stationary, the overload and VM migration will be
a loop in a long time. *erefore, we can get a stationary
policy π to control the overall process of VM migration.
Now, we use the Bellman optimality equation and the
method of dynamic programming to obtain the optimal
control policy π [26, 27]. We introduce the state value
function as follows:

Vπ
T(b(t)) � 

dj,kk′(t)∈D(t)
π kk′(  · 

k,k′∈Q
pj,kk′(t)

·
1
T

R dj,kk′(t)  +
T− 1

T
Vπ

T− 1(b(t− 1)) ,

(9)

where R(dj,kk′(t)) means that the penalty of VMj operates
the action dj,kk′(t); T is the discount factor to determine the
importance of history data; b(t) is the location of VMj at
timeslot t in B(t); and π(kk′) means that VM migrates from
hostk to hostk′ by policy π. We use (9) to select the optimal
state at the next timeslot so as to maximize the reward.*en,
the action value function is

Pπ
T b(t), dj,kk′(t)  � 

k,k′∈Q

pj,kk′(t)
1
T

R dj,kk′(t) 

+
T− 1

T
Vπ

T− 1(b(t− 1)).

(10)

We use (10) to determine the action which can satisfy
the optimal state at the next timeslot. Finally, we use the
value iteration algorithm to handle the control policy π
[27–29].

In Algorithm 2, we aim to get and update the control
policy π, which can control VM migration based on history
data in the History Loads. *e control policy π can improve
the resource utilization and load balancing in the system.
*e overall process of Algorithm 2 is to update the state
value function by finding the optimal reward path. In other
words, we need to traverse all b(t) and choose an optimal
location to migrate VM, which can maximize the reward of
all the VMs.*en, we find an optimal string of states of B(t)
over time. Finally, the algorithm uses the backstepping
approach to get control π using the action value function and
the optimal string of states in B(t).

4.4. Combination Scheduling Cost Model. We firstly design
two types of VMs, the high type and the normal type, which
have a different capacity of conducting tasks.*e tasks in III-
B are divided into three kinds. We use the sharing mode
(Figure 1) and Symbiosis in [9] to execute the scheduling
according to the tasks’ demand for resources.

From Figure 2, we propose a sharing mode for the video-
focus tasks and file-focus tasks to jointly share the resources
of the high-type VMs. With the sharing mode, one VM can
simultaneously execute two tasks, one video-focus task and
one file-focus task. Moreover, two tasks share the resources
of their owner VM, such as the bandwidth and CPU re-
sources. If the video-focus tasks are less than the file-focus
tasks, the VM can have two file-focus tasks. If the video-
focus tasks are more than file-focus tasks, the VM will ex-
ecute one video-focus task and wait for the file-focus tasks.
On the contrary, the normal tasks are processed on normal-
type VMs by the Symbiosis [9] based on the idea of space
sharing in CloudSim [30].

In Figure 3, we use an example to show the process of
sharing mode. We design three tasks and give different

Input: request information
Output: line to which request belongs

(1) Initialize GV, GF
(2) Divide the URL into L;
(3) Calculate βv by circularly comparing the features in L,

GV according to (3) and (4)
(4) Calculate βv by circularly comparing the features in L,

GF following (3) and (5)
(5) Calculate β by (6);
(6) Output the attribution of the request.

ALGORITHM 1: *e description of SCA.
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lengths for each task in transmission by bandwidth and the
execution length of CPU. In order to express clearly, we set the
execution e�ciency of bandwidth as 2 in one interval and that
of CPU as 3 in one interval. Due to the sharing mode, one VM
can have two tasks, and these tasks share resources based on
the percentage of 1:1. So, the process of working is as follows: at
time 0, the v-task1 and f-task1 were allocated to the same VM.
Firstly, v-task1 and f-task1 begin to transfer their transmission
length (T-length) by sharing the bandwidth. At time 2, the
T-length of f-task1 is �nished. �e f-task1 begins to solely
execute its execution length (E-length) on CPU. At the same
time, v-task1 occupied the bandwidth by itself for transferring
its remaining T-length. At time 3, v-task1 �nishes its T-length
and begins to execute its E-length by sharing with f-task1. At
time 5, f-task1 �nishes the E-length and leaves the VM. �en,
the f-task2 begins to transfer for working. So, the f-task2 uses
bandwidth by itself, and v-task1 also uses the CPU by itself. At
time 6, the f-task2 �nishes its T-length and begins to occupy
the CPUwith v-task1. At time 12, f-task2 is �nished and leaves
the VM. V-task1 uses CPU by itself. Finally, v-task1 �nishes its
work and leaves the VM at time 14. At this point, the overall
process is �nished. Algorithms 3–5

In the following, we present the overall algorithm
process of SRAF. When the system scheduling algorithm
(SSA) starts, we will create basic VMs (line 6) for �rstly
scheduling. �e Monitor will constantly monitor ubw

kj (s) and
ucpu

kj (s) of every VM at the beginning of the s− th interval Δt.
�en, the algorithm will choose an operation by the control
policy π, whether doing VM migration or VM scaling, for
minimizing the cost (lines 7–11). When the taski arrives, SSA
will classify taski into the corresponding task line (lines 1–4
and 13).When the task lines have tasks, we will schedule them
according to ubw

kj (s) and ucpu
kj (s) so that we can make full use

of the resources (lines 14–17).
In the process of horizontal-scaling algorithm, we set the

CPU maximum utilization threshold and the bandwidth
maximum utilization threshold as upcpu and upbw, re-
spectively. �en, we use upcpu and upbw to compare with
ucpu

kj (s)and ubw
kj (s) at the beginning of each interval Δt,

respectively. Due to the comparison results, the algorithm
chooses to perform di�erent operations of resource-level
scaling of every active VM.

In Algorithm 5, the arrival ratio and �nished ratio
represent the quantity of the arriving and �nished requests
at the beginning of the interval Δt, respectively. Its main
duty is to control VMs in the overall framework.
According to the situation of resource utilization and the
quantity of requests, the algorithm executes the VM-level
scaling.

5. Performance Evaluation

To evaluate the proposed framework in this paper, we build
the SRAF in CloudSim which is a discrete event simulator
[30]. In CloudSim, we can make duplicate and controllable
experiments following our idea. CloudSim can support
various environments for the resource allocation and
scheduling study. We implement all the models and algo-
rithms in CloudSim for comprehensive evaluation and
analysis.

In the following, we show the overall calculation process
of the execution cost for measuring performance. In the
process of scheduling, we can use (11) and (12) to quantify
the cost of each VM at the s− th interval Δt:

Input: E � B(t), D(t),P(t), fj(t){ }, T, θ
Output: π

(1) ∀b(t) ∈ B(t), V(b(t)) � 0.
(2) for t� 1, 2, 3, . . . do
(3) ∀b(t) ∈ B(t),∀VMj ∈ 〈VMj〉 : V′(b(t)) � maxdkk′(t) ∑

b(t)∈B(t)
pj,kk′(t) · (1/TR(dj,kk′(t)) + T− 1/TVπ

T− 1(b(t− 1)))
(4) if maxb(t)∈B(t) | V(b(t))−V′(b(t)) |< θ then
(5) break.
(6) else
(7) V � V′.
(8) end if
(9) end for
(10) Output π � argmaxb(t)∈B(t)P

π
T(b(t), dkk′).

ALGORITHM 2: Computing π by value iteration.

Transmission length

Execution length

4 21

2 6
v-task1

f-task1
2 9

f-task2

T-length

T-length

T-length

E-length

E-length

E-length

v-task1
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Figure 3: An example for the sharing mode.
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Cq
kj(s) � Cq

bas + δq · Δt · uq
kj(s), (11)

gq
kj(s) � Cq

kj(s) + Cq
sca(s), (12)

where s ∈ 1, 2, . . . , Tj , in which Tj is the overall execution
time of VMj; q ∈ cpu, bw , in which cpu represents the
CPU resource and bw represents the bandwidth resource;

uq
kj(s) contains two aspects, i.e., ucpu

kj (s) and ubw
kj (s), which

represent the utilization of CPU and bandwidth of VMj at
the s− th interval Δt, respectively; Cq

kj(s) is the ordinary cost
of q when the VMj has tasks and is working; Cq

bas is the basic
cost of creating the VM on the elements of set q;Cq

sca(s) is the
scaling cost of q when the VM performs the scaling oper-
ation at the s− th interval Δt; and δq is the execution cost of
one interval Δt on the elements of set q. Furthermore, the

(1) procedure CLASSIFICATION METHOD(taski)
(2) Uses the SCA in Algorithm 1 to classify taski;
(3) Puts the taski into the corresponding line;
(4) End
(5) procedure MAIN
(6) Initializes basic VMs into two types, the high-type VM line and the normal-type line;
(7) while the system is running and in the beginning of an interval do
(8) Monitors ubw

kj (s), ucpu
kj (s) of every VM;

(9) Calls Algorithm 2 to determine the VM migration.
(10) Calls Horizontal-scaling algorithm; //see Algorithm 4
(11) Calls Vertical-scaling algorithm; //see Algorithm 5
(12) end while
(13) while (taski is coming) do
(14) CLASSIFICATION METHOD(taski);
(15) while there have tasks in the three lines do
(16) Schedules the tasks from the video-focus tasks line and file-focus tasks line on the high-type VM by the sharing mode;
(17) Schedules the normal task into normal-type VM;
(18) end while
(19) end while
(18) End

ALGORITHM 3: System scheduling algorithm.

(1) Begin
(2) if ucpu

kj (s)> upcpu and hostk has enough CPU resource then
(3) Scales up the CPU resource of VMj;
(4) end if
(5) if ubw

kj (s)> upbw and hostk has enough bandwidth resource then
(6) Scales up the bandwidth resource of VMj;
(7) end if
(8) if VMj is idle for a long period then
(9) Executes the resource scale down;
(10) end if
(11) End

ALGORITHM 4: Horizontal-scaling algorithm.

(1) Begin
(2) if all the VMs are busy and arrival ratio> finished ratio then
(3) Creates new VM;
(4) else
(5) Releases the idle VM;
(6) end if
(7) End

ALGORITHM 5: Vertical-scaling algorithm.

Mobile Information Systems 7



www.manaraa.com

practical resources cost of all the VMs on hostk in their
working period is given by

gtotal � 
N

j�1

Tj

s�1
gq

kj(s). (13)

*e total cost of all the resources in VMs is given by

gall � 
N

j�1

Tj

s�1
Cq
bas + δq · Δt + Cq

sca(s) . (14)

*erefore, we get the total resource utilization by using
the following equation:

Uq �
gtotal

gall
, (15)

where q ∈ cpu, bw . We can get bandwidth utilization and
CPU utilization, respectively, by (15). From the analysis
above, we get the final optimization cost as follows based on
the control policy π and scaling operation:

gall + 
j�1

N


s�1

Tj

fπ
j (s) � 

j�1

N


s�1

Tj

Cq
bas + δq · Δt + Cq

sca(s) + fπ
j (s) ,

(16)

where fπ
j (s) is the migration cost of VMj by the control

policy π at the s− th timeslot.

5.1. System Configuration. We simulate two physical nodes,
and each node has enough resources. VM configuration is
shown in Table 1 [9, 31]. Due to the expensive CPU, we use
the quantity of CPU to limit the number of VMs. *e
workload dataset in this paper is from the Laboratory forWeb
Algorithmics (LAW) (the dataset is named “eu-2015.urls.gz”;
see http://law.di.unimi.it/webdata/eu-2015/ for more in-
formation). In addition, we use the Poisson process to
simulate the arrival process of service requests [32, 33]. To
test the performance of frameworks, we try to stabilize the
arrival rate. In this paper, we set λ � 8. In the following, we
will set λ from 1 to 10 for testing the robustness of SRAF.

5.2. Performance Analysis. In this section, we compare our
framework (SRAF) with the framework (Symbiosis) which is
proposed in [9]. We also add the Bejo algorithm [6] into the
Symbiosis. In addition, we add the deadline factor into the
experiments for clearly showing the difference between
SRAF and Symbiosis.

In Figure 4, we make the comparison of SRAF and
Symbiosis at different deadlines. All the tasks will be ser-
viced in each framework, and they have three statuses.
Success means that the task is finished smoothly in its
owner VM. Failedmeans that the task is discarded when its
service time exceeds the deadline. Scalemeans that the task
needs extra resource from the resources pool for its
working. In Figure 5, the results represent the utilization of
bandwidth and CPU in Symbiosis and SRAF at different
deadlines. In Figure 4, with the growing deadline, many
failed and scale tasks become success tasks and wait for

processing. *e bandwidth and CPU will have more idle
time. As a result, the resource utilizations are decreased as
shown in Figure 5.

In Figure 4, when deadline is 20 ns and 30 ns, there are
still some failed tasks in SRAF, while Symbiosis has none.
When the deadline is 40 ns and 50 ns, all tasks in SRAF are
success tasks, but there are also some scale tasks in Sym-
biosis. *erefore, SRAF has a higher absorption rate of
requests and higher efficiency than Symbiosis. What caused
the status above has two sides. For one thing, the more
training the SCA has, the better classification results it has.
*e better training of SCA can make a better combination of
file-focus tasks and video-focus tasks for reducing the
waiting time by the sharing mode. Immediately following
the operation of SCA, SRAF will make a full use of resources.
As a result, SRAF hasmore time for working andmany failed
and scale tasks will become success tasks. For another thing,
the sharing mode may prolong the execution time of long
tasks (video tasks). But this problem can be solved by the
method of resetting resource sharing proportion. For ex-
ample, in Figure 5, the resource utilizations of the Symbiosis
are decreasing with the growing deadline. *e resource
utilizations of SRAF are approximated to 97%. *is phe-
nomenon means that there are some long tasks held on CPU
resources with the growing deadline. As a result, the
bandwidth resources are unoccupied. Finally, the utilization
of bandwidth is decreasing and that of CPU is increasing.
However, SRAF has a different performance. Because of
SCA, the long tasks (video tasks) are executed with short
tasks (file tasks) by the sharing mode. In other words, one
VM can have two tasks. When the short task has been
finished and the long task is still working, a new short task
will come for transmitting. As a result, the CPU and
bandwidth are occupied by one task. Hence, the resource
utilization of CPU and bandwidth decreases, but in a small
range. However, the resource utilizations are still higher than
those of Symbiosis. *e detailed process of the above ex-
ample is shown in Figure 2. Taking a holistic look of Figure 4,
the SRAF also has a shorter dropping rate and scaling rate of
all the tasks. *erefore, facing the same tasks, SRAF has
a higher resource utilization and task processing rate than
Symbiosis.

In order to measure the performance of our control
policy π in Section 4.3, we add the operation of VM mi-
gration into Symbiosis for comparison, which is named
“Symbiosis + vm-mi” (SVM). Additional execution time
represents the total execution time of VM migration and
scaling operation. Additional cost means the total cost of all
the VMmigration and scaling operations. For enhancing the
veracity, we make ten experiments of SRAF, Symbiosis, and
SVM, respectively, for comparison at each deadline. Let us
firstly make a comparison with Symbiosis and SVM in
Figures 6 and 7 because SVM makes a control policy to
measure the VM migration. *erefore, when VM becomes
overloaded (resource utilization exceeds thresholds), the
overloaded VM will firstly choose to make migration by
control policy. If not, SVM will do scaling operation (shown
in Algorithms 4 and 5). On the contrary, Symbiosis can only
do scaling operation for these overloaded VMs. In theory,
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VM migration can reduce the cost than scaling operation
because scaling operation is easily creating frequent ¦uc-
tuation. Hence, taking an overall look of Figures 6 and 7,
SVM has a shorter execution time and cost than Symbiosis
because the control policy can make a long-time prediction

to operate VMmigration so as to avoid the VM overload and
resource lack. In other words, SVM uses the method of VM
migration to cut down frequent scaling operation for re-
ducing the additional cost.

From the overall perspective of Figure 6, the total exe-
cution time of Symbiosis is much more than that of SRAF.
�e total execution time of SRAF is almost at the level of 0.6
× 105 ns when deadline is 50 ns. Correspondingly, the ad-
ditional execution time is approximated to zero. But the total
execution time of Symbiosis is almost four times higher than
that of SRAF when the deadline is 50 ns. �e total cost of
Symbiosis in Figure 7 is also approximately �ve times higher
than that of SRAF.�e analysis above means that the service
latency of SRAF is much shorter than that of Symbiosis. For
example, in Figure 5, the decrease of resource utilizations on
Symbiosis is sharper than that on SRAF with the growing
deadline. �erefore, when more failed and scale tasks be-
come success tasks, the total execution time of Symbiosis will
continually increase. �e total execution time of SRAF is
changing in a small range. �at is to say, facing more tasks,
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Figure 5: �e utilization of bandwidth and CPU in SRAF and
Symbiosis frameworks at each deadline.

Table 1: VM con�guration.

VM type
CPU Bandwidth

MIPS (MB/s) Per cost (dollar/h) Per scale cost (dollar/h) Bandwidth (MB/s) Per cost (dollar/h) Per scale cost (dollar/h)
High 1000 0.05 0.06 100 0.005 0.006
Normal 600 0.03 0.04 60 0.003 0.004
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Figure 6: �e total execution time (a) and additional execution
time (b) of SRAF, Symbiosis, and Symbiosis + vm-mi frameworks
at each deadline.
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SRAF has a stable and better performance on reducing
service latency and cost than Symbiosis.

For testing the robustness of SRAF, we set λ from 1 to 10
to simulate di�erent situations of congestion. During ex-
periments, we will provide enough resources. In order to
avoid the additional cost made by frequent operation of
changing the resources of VMs, we make the operation of
resource-scaling can only maximully add twice resources of
the original con�guration resources on VM. We make ten
experiments for each framework at di�erent λ. �en,
according to these experiments, we get the mean bandwidth
utilization, mean CPU utilization, and total cost of each
framework, which are shown in Figures 8–10, respectively.
In Figure 8, the bandwidth utilization of SRAF, Symbiosis,
and SVM is increasing with the growing value of λ. What
caused the increasing phenomenon has two sides. Firstly,
because the arrival rate of requests is based on the Poisson
distribution, the situation of congestions becomes smooth
with the growing value of λ. So, facing the more stable arrival
rate, frameworks will have more time for working. As
a result, all the bandwidth utilizations have an increasing
trend with the growing value of λ. Secondly, if the deadline of
requests exceeds the transmission time, they will become the
failed tasks. In addition, we do not calculate the time and
cost of failed tasks. In other words, failed tasks are the waste
of bandwidth, and it is the main factor a�ecting the
bandwidth utilization. �erefore, with the growing value of
λ, the more stable arrival rate will make less failed tasks. As
a result, the bandwidth utilization of frameworks is

increasing. Taking a detailed look of Figure 8, it is observed
that the bandwidth utilization of SRAF is higher than that
of Symbiosis and SVM. Symbiosis and SVM have an ap-
proximate trend. It is because that SRAF can service two tasks
simultaneously with the sharing mode (shown in Figure 2).
�e sharing mode can make full use of bandwidth and CPU
resources than Symbiosis and SVM. �erefore, SRAF can
e�ectively reduce the latency and enhance the utilization of
free resources. �e same trend of SVM and Symbiosis is that
they have the samemethod of bandwidth transmission and do
not have the sharing mode. According to these analogies
above, for di�erent arrival rates of requests, SRAF has a better
performance on bandwidth utilization than Symbiosis and
SVM, especially with the stable arrival rate.

Figure 9 presents the CPU utilizations of SRAF,
Symbiosis, and SVM at di�erent λ. Taking an overall look of
Figures 8 and 9, CPU utilization of di�erent frameworks is
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Figure 7: �e total cost (a) and additional cost (b) of SRAF,
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also increasing with the growing value of λ as the situation
of bandwidth utilization. In addition, the increases of
adjacent λ on CPU utilization are slightly higher than those
on bandwidth utilization. It is because that the sharp
congestion will cause more free time on the CPU resource
than the bandwidth resource. �e queueing time will ex-
ceed the deadline and cause many failed tasks. When the
value of λ is growing from 1 to 4, the CPU utilizations of
SVM are higher than those of Symbiosis. �is phenomenon
means that VM migration in SVM cuts down the quantity
of scaling tasks and failed tasks. It is because that VM
migration can avoid the overload of VMs and reduce the
free time of failed tasks. In addition, with the growing value
of λ, the arrival rate of requests is becoming stable. �e
stable arrival rate will reduce the frequent ¦uctuation of
scaling operation. �e operation of VM migration can also
be reduced. When the value of λ is larger than 4, the CPU
utilizations of SVM and Symbiosis are approximately the
same. Certainly, CPU utilization of SRAF is stable and
higher than that of SVM and Symbiosis because of the
sharing mode and VM migration.

Figure 10 represents the total cost of SRAF, Symbiosis,
and SVM at di�erent λ. Di�erent to the situation in Figures 8
and 9, the total cost of SVM and Symbiosis is increasing with
growing λ. �e total cost of SRAF is decreasing.What caused
this phenomenon has two sides. Firstly, because of the
higher utilizations of bandwidth and CPU in SRAF, SRAF
reduces more waiting time and service time for all tasks with
the sharing mode, especially for those short tasks behind the
long tasks in the queue. In addition, the one-by-one service
method of Symbiosis is the main factor which a�ects the
utilizations of CPU and bandwidth. �erefore, facing the
same tasks, Symbiosis will waste many resources and pro-
long the service time than SRAF. Secondly, VM migration
can reduce frequent scaling operation. For example, the total
cost of SVM is less than that of Symbiosis at each λ in
Figure 10. It is because that the control policy can make
a trade-o� between VMmigration cost and scaling operation
cost. Control policy has the ability of prediction according to

the history data, which can select the minimal cost of each
action for reducing the additional cost. �erefore, taking
a holistic look of Figures 8–10, SRAF has a better perfor-
mance on stability and robustness.

6. Conclusions

In this paper, we have designed, modeled, and evaluated the
SRAF, which aims to reduce the latency of service requests in
mobile data networks and enhance the utilization of
bandwidth and CPU resources. In SRAF, we have proposed
the SCA to execute the tasks’ classi�cation. We also designed
a sharing mode to realize the combination process of two
tasks. Sharing mode greatly reduces the waiting time during
service. In addition, we also designed anMDP to control VM
migration. We use the combination method of VM mi-
gration and scaling to enhance resource utilization. Finally,
we make many di�erent experiments to show that SRAF has
a good performance on resource utilization, stability, and
robustness.
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